Copied to
clipboard

G = C4218Q8order 128 = 27

5th semidirect product of C42 and Q8 acting via Q8/C4=C2

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C4218Q8, C43.16C2, C42.347D4, C23.762C24, C4.11(C4⋊Q8), C428C4.54C2, C4.17(C4.4D4), (C22×C4).267C23, C22.472(C22×D4), C22.183(C22×Q8), (C2×C42).1096C22, (C22×Q8).252C22, C2.C42.457C22, C23.67C23.65C2, C2.49(C23.37C23), C2.23(C2×C4⋊Q8), (C2×C4⋊Q8).40C2, (C2×C4).836(C2×D4), (C2×C4).174(C2×Q8), C2.36(C2×C4.4D4), (C2×C4).676(C4○D4), (C2×C4⋊C4).565C22, C22.603(C2×C4○D4), SmallGroup(128,1594)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C4218Q8
C1C2C22C23C22×C4C2×C42C43 — C4218Q8
C1C23 — C4218Q8
C1C23 — C4218Q8
C1C23 — C4218Q8

Generators and relations for C4218Q8
 G = < a,b,c,d | a4=b4=c4=1, d2=c2, ab=ba, ac=ca, dad-1=a-1, bc=cb, dbd-1=a2b-1, dcd-1=c-1 >

Subgroups: 420 in 252 conjugacy classes, 132 normal (8 characteristic)
C1, C2, C2, C4, C4, C22, C22, C2×C4, C2×C4, Q8, C23, C42, C42, C4⋊C4, C22×C4, C22×C4, C2×Q8, C2.C42, C2×C42, C2×C42, C2×C4⋊C4, C4⋊Q8, C22×Q8, C43, C428C4, C23.67C23, C2×C4⋊Q8, C4218Q8
Quotients: C1, C2, C22, D4, Q8, C23, C2×D4, C2×Q8, C4○D4, C24, C4.4D4, C4⋊Q8, C22×D4, C22×Q8, C2×C4○D4, C2×C4.4D4, C2×C4⋊Q8, C23.37C23, C4218Q8

Smallest permutation representation of C4218Q8
Regular action on 128 points
Generators in S128
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)
(1 98 24 26)(2 99 21 27)(3 100 22 28)(4 97 23 25)(5 116 107 83)(6 113 108 84)(7 114 105 81)(8 115 106 82)(9 75 57 13)(10 76 58 14)(11 73 59 15)(12 74 60 16)(17 50 29 63)(18 51 30 64)(19 52 31 61)(20 49 32 62)(33 80 54 40)(34 77 55 37)(35 78 56 38)(36 79 53 39)(41 92 109 122)(42 89 110 123)(43 90 111 124)(44 91 112 121)(45 66 103 120)(46 67 104 117)(47 68 101 118)(48 65 102 119)(69 96 85 126)(70 93 86 127)(71 94 87 128)(72 95 88 125)
(1 76 17 37)(2 73 18 38)(3 74 19 39)(4 75 20 40)(5 65 93 122)(6 66 94 123)(7 67 95 124)(8 68 96 121)(9 62 54 25)(10 63 55 26)(11 64 56 27)(12 61 53 28)(13 32 80 23)(14 29 77 24)(15 30 78 21)(16 31 79 22)(33 97 57 49)(34 98 58 50)(35 99 59 51)(36 100 60 52)(41 116 102 86)(42 113 103 87)(43 114 104 88)(44 115 101 85)(45 71 110 84)(46 72 111 81)(47 69 112 82)(48 70 109 83)(89 108 120 128)(90 105 117 125)(91 106 118 126)(92 107 119 127)
(1 86 17 116)(2 85 18 115)(3 88 19 114)(4 87 20 113)(5 100 93 52)(6 99 94 51)(7 98 95 50)(8 97 96 49)(9 118 54 91)(10 117 55 90)(11 120 56 89)(12 119 53 92)(13 45 80 110)(14 48 77 109)(15 47 78 112)(16 46 79 111)(21 69 30 82)(22 72 31 81)(23 71 32 84)(24 70 29 83)(25 126 62 106)(26 125 63 105)(27 128 64 108)(28 127 61 107)(33 121 57 68)(34 124 58 67)(35 123 59 66)(36 122 60 65)(37 41 76 102)(38 44 73 101)(39 43 74 104)(40 42 75 103)

G:=sub<Sym(128)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,98,24,26)(2,99,21,27)(3,100,22,28)(4,97,23,25)(5,116,107,83)(6,113,108,84)(7,114,105,81)(8,115,106,82)(9,75,57,13)(10,76,58,14)(11,73,59,15)(12,74,60,16)(17,50,29,63)(18,51,30,64)(19,52,31,61)(20,49,32,62)(33,80,54,40)(34,77,55,37)(35,78,56,38)(36,79,53,39)(41,92,109,122)(42,89,110,123)(43,90,111,124)(44,91,112,121)(45,66,103,120)(46,67,104,117)(47,68,101,118)(48,65,102,119)(69,96,85,126)(70,93,86,127)(71,94,87,128)(72,95,88,125), (1,76,17,37)(2,73,18,38)(3,74,19,39)(4,75,20,40)(5,65,93,122)(6,66,94,123)(7,67,95,124)(8,68,96,121)(9,62,54,25)(10,63,55,26)(11,64,56,27)(12,61,53,28)(13,32,80,23)(14,29,77,24)(15,30,78,21)(16,31,79,22)(33,97,57,49)(34,98,58,50)(35,99,59,51)(36,100,60,52)(41,116,102,86)(42,113,103,87)(43,114,104,88)(44,115,101,85)(45,71,110,84)(46,72,111,81)(47,69,112,82)(48,70,109,83)(89,108,120,128)(90,105,117,125)(91,106,118,126)(92,107,119,127), (1,86,17,116)(2,85,18,115)(3,88,19,114)(4,87,20,113)(5,100,93,52)(6,99,94,51)(7,98,95,50)(8,97,96,49)(9,118,54,91)(10,117,55,90)(11,120,56,89)(12,119,53,92)(13,45,80,110)(14,48,77,109)(15,47,78,112)(16,46,79,111)(21,69,30,82)(22,72,31,81)(23,71,32,84)(24,70,29,83)(25,126,62,106)(26,125,63,105)(27,128,64,108)(28,127,61,107)(33,121,57,68)(34,124,58,67)(35,123,59,66)(36,122,60,65)(37,41,76,102)(38,44,73,101)(39,43,74,104)(40,42,75,103)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,98,24,26)(2,99,21,27)(3,100,22,28)(4,97,23,25)(5,116,107,83)(6,113,108,84)(7,114,105,81)(8,115,106,82)(9,75,57,13)(10,76,58,14)(11,73,59,15)(12,74,60,16)(17,50,29,63)(18,51,30,64)(19,52,31,61)(20,49,32,62)(33,80,54,40)(34,77,55,37)(35,78,56,38)(36,79,53,39)(41,92,109,122)(42,89,110,123)(43,90,111,124)(44,91,112,121)(45,66,103,120)(46,67,104,117)(47,68,101,118)(48,65,102,119)(69,96,85,126)(70,93,86,127)(71,94,87,128)(72,95,88,125), (1,76,17,37)(2,73,18,38)(3,74,19,39)(4,75,20,40)(5,65,93,122)(6,66,94,123)(7,67,95,124)(8,68,96,121)(9,62,54,25)(10,63,55,26)(11,64,56,27)(12,61,53,28)(13,32,80,23)(14,29,77,24)(15,30,78,21)(16,31,79,22)(33,97,57,49)(34,98,58,50)(35,99,59,51)(36,100,60,52)(41,116,102,86)(42,113,103,87)(43,114,104,88)(44,115,101,85)(45,71,110,84)(46,72,111,81)(47,69,112,82)(48,70,109,83)(89,108,120,128)(90,105,117,125)(91,106,118,126)(92,107,119,127), (1,86,17,116)(2,85,18,115)(3,88,19,114)(4,87,20,113)(5,100,93,52)(6,99,94,51)(7,98,95,50)(8,97,96,49)(9,118,54,91)(10,117,55,90)(11,120,56,89)(12,119,53,92)(13,45,80,110)(14,48,77,109)(15,47,78,112)(16,46,79,111)(21,69,30,82)(22,72,31,81)(23,71,32,84)(24,70,29,83)(25,126,62,106)(26,125,63,105)(27,128,64,108)(28,127,61,107)(33,121,57,68)(34,124,58,67)(35,123,59,66)(36,122,60,65)(37,41,76,102)(38,44,73,101)(39,43,74,104)(40,42,75,103) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128)], [(1,98,24,26),(2,99,21,27),(3,100,22,28),(4,97,23,25),(5,116,107,83),(6,113,108,84),(7,114,105,81),(8,115,106,82),(9,75,57,13),(10,76,58,14),(11,73,59,15),(12,74,60,16),(17,50,29,63),(18,51,30,64),(19,52,31,61),(20,49,32,62),(33,80,54,40),(34,77,55,37),(35,78,56,38),(36,79,53,39),(41,92,109,122),(42,89,110,123),(43,90,111,124),(44,91,112,121),(45,66,103,120),(46,67,104,117),(47,68,101,118),(48,65,102,119),(69,96,85,126),(70,93,86,127),(71,94,87,128),(72,95,88,125)], [(1,76,17,37),(2,73,18,38),(3,74,19,39),(4,75,20,40),(5,65,93,122),(6,66,94,123),(7,67,95,124),(8,68,96,121),(9,62,54,25),(10,63,55,26),(11,64,56,27),(12,61,53,28),(13,32,80,23),(14,29,77,24),(15,30,78,21),(16,31,79,22),(33,97,57,49),(34,98,58,50),(35,99,59,51),(36,100,60,52),(41,116,102,86),(42,113,103,87),(43,114,104,88),(44,115,101,85),(45,71,110,84),(46,72,111,81),(47,69,112,82),(48,70,109,83),(89,108,120,128),(90,105,117,125),(91,106,118,126),(92,107,119,127)], [(1,86,17,116),(2,85,18,115),(3,88,19,114),(4,87,20,113),(5,100,93,52),(6,99,94,51),(7,98,95,50),(8,97,96,49),(9,118,54,91),(10,117,55,90),(11,120,56,89),(12,119,53,92),(13,45,80,110),(14,48,77,109),(15,47,78,112),(16,46,79,111),(21,69,30,82),(22,72,31,81),(23,71,32,84),(24,70,29,83),(25,126,62,106),(26,125,63,105),(27,128,64,108),(28,127,61,107),(33,121,57,68),(34,124,58,67),(35,123,59,66),(36,122,60,65),(37,41,76,102),(38,44,73,101),(39,43,74,104),(40,42,75,103)]])

44 conjugacy classes

class 1 2A···2G4A···4AB4AC···4AJ
order12···24···44···4
size11···12···28···8

44 irreducible representations

dim11111222
type++++++-
imageC1C2C2C2C2D4Q8C4○D4
kernelC4218Q8C43C428C4C23.67C23C2×C4⋊Q8C42C42C2×C4
# reps114824816

Matrix representation of C4218Q8 in GL6(𝔽5)

300000
020000
002000
000300
000030
000002
,
400000
010000
003000
000300
000040
000001
,
100000
010000
001000
000100
000020
000003
,
010000
100000
000100
001000
000001
000040

G:=sub<GL(6,GF(5))| [3,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,2],[4,0,0,0,0,0,0,1,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,4,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,0,3],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,1,0] >;

C4218Q8 in GAP, Magma, Sage, TeX

C_4^2\rtimes_{18}Q_8
% in TeX

G:=Group("C4^2:18Q8");
// GroupNames label

G:=SmallGroup(128,1594);
// by ID

G=gap.SmallGroup(128,1594);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,224,253,456,758,184,2019,80]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^4=1,d^2=c^2,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,b*c=c*b,d*b*d^-1=a^2*b^-1,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽